Algorithms for the Geronimus transformation for orthogonal polynomials on the unit circle

نویسندگان

  • Matthias Humet
  • Marc Van Barel
چکیده

Let L̂ be a positive definite bilinear functional on the unit circle defined on Pn, the space of polynomials of degree at most n. Then its Geronimus transformation L is defined by L̂(p, q) = L ( (z − α)p(z), (z − α)q(z) ) for all p, q ∈ Pn, α ∈ C. Given L̂, there are infinitely many such L which can be described by a complex free parameter. The Hessenberg matrix that appears in the recurrence relations for orthogonal polynomials on the unit circle is unitary, and can be factorized using its associated Schur parameters. Recent results show that the unitary Hessenberg matrices associated with L and L̂, respectively, are related by a QR step. For the analogue on the real line of this so-called spectral transformation, the tridiagonal Jacobi matrices associated with the respective functionals are related by an LR step. In this paper we derive algorithms that compute the new Schur parameters after applying a Geronimus transformation. We present two forward and one backward algorithm. The QR step between unitary Hessenberg matrices plays a central role in the derivation of each of the algorithms, where the main idea is to do the inverse of a QR step. Making use of the special structure of unitary Hessenberg matrices, all the algorithms are efficient and need only O(n) flops. We present several numerical experiments to analyze the accuracy and to explain the behaviour of the algorithms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Matrix measures on the unit circle, moment spaces, orthogonal polynomials and the Geronimus relations

We study the moment space corresponding to matrix measures on the unit circle. Moment points are characterized by non-negative definiteness of block Toeplitz matrices. This characterization is used to derive an explicit representation of orthogonal polynomials with respect to matrix measures on the unit circle and to present a geometric definition of canonical moments. It is demonstrated that t...

متن کامل

Old and New Geronimus Type Identities for Real Orthogonal Polynomials

Let be a positive measure on the real line, with orthogonal polynomials fpng and leading coe¢ cients f ng. The Geronimus type identity 1 jIm zj Z 1 1 P (t) jzpn (t) pn 1 (t)j dt = n 1 n Z P (t) d (t) ; valid for all polynomials P of degree 2n 2 has known analogues within the theory of orthogonal rational functions, though apparently unknown in the theory of orthogonal polynomials. We present ne...

متن کامل

Perturbation of Orthogonal Polynomials on an Arc of the Unit Circle

Orthogonal polynomials on the unit circle are completely determined by their reflection coefficients through the Szegő recurrences. We assume that the reflection coefficients converge to some complex number a with 0 < |a| < 1. The polynomials then live essentially on the arc { e : α ≤ θ ≤ 2π−α } where cos α 2 def = √ 1− |a|2 with α ∈ (0, π). We analyze the orthogonal polynomials by comparing th...

متن کامل

Schur Functions and Orthogonal Polynomials on the Unit Circle

We apply a theorem of Geronimus to derive some new formulas connecting Schur functions with orthogonal polynomials on the unit circle. The applications include the description of the associated measures and a short proof of Boyd’s result about Schur functions. We also give a simple proof for the above mentioned theorem of Geronimus. 1. Schur functions In what follows we adopt the following nota...

متن کامل

New Integral Identities for Orthogonal Polynomials on the Real Line

Let be a positive measure on the real line, with associated orthogonal polynomials fpng and leading coe¢ cients f ng. Let h 2 L1 (R) . We prove that for n 1 and all polynomials P of degree 2n 2, Z 1 1 P (t) pn (t) h pn 1 pn (t) dt = n 1 n Z 1 1 h (t) dt Z P (t) d (t) : As a consequence, we establish weak convergence of the measures in the lefthand side. Orthogonal Polynomials on the real line, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Computational Applied Mathematics

دوره 267  شماره 

صفحات  -

تاریخ انتشار 2014